
Intermediate Representation
Prof. James L. Frankel

Harvard University

Version of 3:37 PM 28-Nov-2023
Copyright © 2023, 2022, 2020, 2018, 2016, 2015 James L. Frankel. All rights reserved.

Benefits

• Compiling i languages for j instruction sets

• Direct code generation would require i*j compilers

• Compiling i languages to IR code and generating machine code from
IR for j instruction sets requires i+j compiler components

2

Three Address Code

• Three Address Code
• Up to two sources
• One destination
• One operation

• i = j+k*l could be represented as
• r0 = k * l
• r1 = j + r0
• i = r1

• Or as
• r0 = k * l
• i = j + r0

• Think of the rn names as representing the names of either temporaries or
registers
• We will name our registers with the letter r followed by an integer (counting from 0)

3

Quadruples Representation

• Three address code can be represented by quadruples
• Our result/destination will always be in the second field in a quadruple

• (operation, result/destinationAddress, operand1, operand2)

• The three address code for
• r0 = k * l
• r1 = j + r0
• i = r1

• Can be represented in quadruples as
• (multSignedWord, r0, k, l) # we will not allow identifiers to appear in
• (addSignedWord, r1, j, r0) # these IR nodes
• (assignWord, i, r1) # assignWord will not be one of our IR opcodes

• Not all quadruples have four fields

4

Triples Representation

• Three address code can be represented by triples

• The result/destination in triples is not encoded as an operand
• Instead the result of a triple is expressed by referring to the triple indirectly
• (operation, operand1, operand2)
• Modification of a user’s object is always explicit

• (assignWord, destinationAddress, operand)

• The three address code for
• r0 = k * l
• r1 = j + r0
• i = r1

• Can be represented in triples as
• 0: (multSignedWord, k, l)
• 1: (addSignedWord, j, (0))
• 2: (assignWord, i, (1)) # assignWord will not be one of our IR opcodes

• Not all triples have three fields

5

Our Implementation

• We will be generating quadruples
• Both signed and unsigned variants of operations in our quadruples will

exist (when they are different)
• For example, a comparison for equality does not have signed variants

• Store quadruples in a doubly-linked linked list

• Traverse the AST and generate IR code at each node that represents
executable operations

• Recursively generate IR code for subtrees
• To each AST node that has a value, add an attribute that is the name of the

temporary/register that contains that value

6

Generating Code for Subtrees

• We’d like to generate IR code for subtrees in the AST without knowing how
the result is going to be used

• We don’t know if the result of evaluating a subtree will be used as an lvalue
or as an rvalue
• If an operator can result in an lvalue, return the result as an lvalue and remember

that it is an lvalue
• We can always derive an rvalue from an lvalue by loading the value at the address given by

the lvalue
• If an operator cannot result in an lvalue, return the result as an rvalue and

remember that it is an rvalue

• We remember the lvalue-ness or rvalue-ness of the derived code with a tag
in the AST subtree as we generate IR code

• We will represent an lvalue by the address of the referent

7

Deriving an rvalue from an lvalue (1 of 3)

• Some operators require lvalues and others allow both rvalues and lvalues

• If we have an lvalue and want an rvalue, derive the rvalue by performing a load
operation

• A reference to a name (identifier) – other than an enumeration constant – can be either
an lvalue or an rvalue
• §7.3.1: The name of a variable declared to be of arithmetic, pointer, enumeration, structure,

or union type evaluates to an object of that type; the name is an lvalue expression

• For i = j, where all variables are ints, we generate the following IR code

• Reference to name i generates an lvalue
• (addressOf, r0, i) # r0 is an lvalue for i; r0 -> i

• Reference to name j generates an lvalue
• (addressOf, r1, j) # r1 is an lvalue for j; r1 -> j

8

Deriving an rvalue from an lvalue (2 of 3)

• Assignment operator

• §7.9 (Assignment Expressions) Operands: Every assignment operator requires
a modifiable lvalue as its left operand and modifies that lvalue by storing a
new value into it.

• The right operand is treated as an rvalue (i.e., if the right operand is not
already an rvalue, then a load is generated to convert the lvalue into an
rvalue)

• §7.9 Result: The result of an assignment expression is never an lvalue.

• Because the assignment operator requires its left operand to be an lvalue and
because r0 is an lvalue already, it does not need to be changed

• But, the assignment operator treats its right operand as an rvalue and r1 is an
lvalue; therefore we need to load the right operand by performing
• (loadWord, r2, r1) # r2 is an rvalue for j; r2 <- j

9

Deriving an rvalue from an lvalue (3 of 3)

• Now we have an lvalue in r0 for the lhs and an rvalue in r2 for the rhs
of the assignment operator

• We can now generate code for the assignment operator
• (storeWord, r0, r2) # i <- j

• To summarize, for i = j, where all variables are ints, we generate the
following IR code:
• (addressOf, r0, i) # r0 is an lvalue for i; r0 -> i
• (addressOf, r1, j) # r1 is an lvalue for j; r1 -> j
• (loadWord, r2, r1) # r2 is an rvalue for j; r2 <- j
• (storeWord, r0, r2) # i <- j

10

References to Identifiers in IR Code

• The references to identifiers in IR code are not simply the names used
in the input C program

• The identifiers referred to in IR code are represented by pointers to
the appropriate symbol table entry for the relevant identifier
• This is required in order to uniquely identify the specific identifier

• The specific identifier will include information about the storage duration of
that identifier (is it static or local (auto)?)

• Later, we will add additional information to identifier entries in symbol tables

11

Details of addressOf IR

• When executing (addressOf, r0, i)
• i should be a designator for a user’s variable

• r0 should be a register name

• (addressOf, r0, i) loads register r0 with the address of user variable i

• Addresses can be taken only of names that refer to memory locations
(i.e., user identifiers)

• Addresses cannot be taken of registers

12

Details of loadWord and storeWord IRs

• When executing (loadWord, r2, r1)
• Both operands (r2 and r1) should be register names
• r1 should contain the address for a word in memory that will be read
• r2 will be loaded with the value that was present in the specified word in memory
• (loadWord, r2, r1) reads a word from memory at the location given by register r1 and

stores that word into register r2

• When executing (storeWord, r0, r2)
• Both operands (r0 and r2) should be register names
• r2 should contain the value to be stored in memory
• r0 should contain the address for a word in memory that will be written
• (storeWord, r0, r2) writes the value in register r2 into a word in memory at the

location given by register r0

13

Operator results: lvalue or rvalue

• For i = j+k*l, where all variables are ints, are the intermediate results able to be
lvalues or rvalues?
• Keep in mind that a reference to a name (identifier) – other than an enumeration constant –

can be either an lvalue or an rvalue

• Names (Identifier Reference)
• §7.3.1: The name of a variable declared to be of arithmetic, pointer, enumeration, structure,

or union type evaluates to an object of that type; the name is an lvalue expression

• Multiplication
• §7.6.1: The result is not an lvalue

• Addition
• §7.6.2: The result is not an lvalue

• Simple Assignment
• §7.9 (Assignment Expressions): The result of an assignment expression is never an lvalue
• §7.9.1 (Simple Assignment): The result is not an lvalue

14

Operator operands: lvalue or rvalue

• For i = j+k*l, where all variables are ints, are the intermediate operands
required to be lvalues or rvalues?

• Multiplication
• Both operands are treated as rvalues (i.e., if the operand is not already an rvalue,

then a load is generated to convert the lvalue into an rvalue)

• Addition
• Both operands are treated as rvalues (i.e., if the operand is not already an rvalue,

then a load is generated to convert the lvalue into an rvalue)

• Assignment
• §7.9: Every assignment operator requires a modifiable lvalue as its left operand and

modifies that lvalue by storing a new value into it
• The right operand is treated as an rvalue (i.e., if the right operand is not already an

rvalue, then a load is generated to convert the lvalue into an rvalue)

15

Evaluation Example

• Quadruples code generated for i = j+k*l, where all variables are ints
• (addressOf, r0, i) # r0 is an lvalue for i; r0 -> i
• (addressOf, r1, j) # r1 is an lvalue for j; r1 -> j
• (addressOf, r2, k) # r2 is an lvalue for k; r2 -> k
• (addressOf, r3, l) # r3 is an lvalue for l; r3 -> l
• (loadWord, r4, r2) # r4 is an rvalue for k; r4 <- k
• (loadWord, r5, r3) # r5 is an rvalue for l; r5 <- l
• (multSignedWord, r6, r4, r5) # r6 is an rvalue for k*l; r6 <- k*l
• (loadWord, r7, r1) # r7 is an rvalue for j; r7 <- j
• (addSignedWord, r8, r7, r6) # r8 is an rvalue for j+k*l; r8 <- j+k*l
• (storeWord, r0, r8) # i <- j+k*l

16

Quadruple Operation Codes (1 of 5)

• addressOf

• loadWord
• loadHalfWord
• loadSignedHalfWord
• loadByte
• loadSignedByte
• storeWord
• storeHalfWord
• storeByte

17

Quadruple Operation Codes (2 of 5)

• multSignedWord

• multUnsignedWord

• divSignedWord

• divUnsignedWord

• remSignedWord

• remUnsignedWord

• addSignedWord

• addUnsignedWord

• subSignedWord

• subUnsignedWord

• leftShiftWord

• rightShiftSignedWord

• rightShiftUnsignedWord

18

Quadruple Operation Codes (3 of 5)

• ltSignedWord

• ltUnsignedWord

• leSignedWord

• leUnsignedWord

• geSignedWord

• geUnsignedWord

• gtSignedWord

• gtUnsignedWord

• eqWord

• neWord

19

Quadruple Operation Codes (4 of 5)

• bitwiseAndWord

• bitwiseXorWord

• bitwiseOrWord

20

Quadruple Operation Codes (5 of 5)

• unaryMinus

• unaryLogicalNegation

• unaryBitwiseNegation

• etc.

21

Numbering Temporaries/Registers

• When generating IR code, assume an infinite number of
temporaries/registers
• Every new IR result should be new temporary

• There will be some cases when a temporary will need to be an IR result in
more than one IR instruction
• This will happen only with the &&, ||, and ? : operators

• We’ll deal with the constrained number of real registers in MIPS later
in the code generation process

22

IR Code for Integral Literal

• For
int i;
i = 5;

• A reference to an integral literal will use constInt

• §7.3.2: Except for string constants, a literal expression is never an
lvalue

• IR code
• (addressOf, r0, i) # r0 is an lvalue for i; r0 -> i
• (constInt, r1, 5) # r1 is an rvalue for 5; r1 <- 5
• (storeWord, r0, r1) # i <- 5

23

IR Code for Address (unary prefix &) Operator

• For
int i, *p;
i = 5;
p = &i;

• §7.5.6: The operand of & must be either a function designator or an lvalue designating an object. The usual
conversions are not applied to the operand of the & operator, and its result is never an lvalue.

• For the Address operator, no code needs to be generated to convert the lvalue operand into an rvalue result

• IR code
• (addressOf, r0, i) # r0 is an lvalue for i; r0 -> i
• (constInt, r1, 5) # r1 is an rvalue for 5; r1 <- 5
• (storeWord, r0, r1) # i <- 5
• (addressOf, r2, p) # r2 is an lvalue for p; r2 -> p
• (addressOf, r3, i) # r3 is an lvalue for i; r3 -> i
• # r3 is an rvalue for &i
• (storeWord, r2, r3) # p -> i (or, equivalently, p <- &i)

24

IR Code for Indirection/Dereference (unary
prefix *) Operator
• For

int i, j, *p;

i = 5;

p = &i;

j = *p;

• §7.5.7: If the pointer points to an object, then the result is an lvalue referring to the object

• The operand is treated as an rvalue (i.e., if the operand is not already an rvalue, then a load is generated to convert the lvalue into an rvalue)

• For the Indirection/Dereference operator, no code needs to be generated to convert the rvalue operand into an lvalue result

• IR code
• (addressOf, r0, i) # r0 is an lvalue for i; r0 -> i

• (constInt, r1, 5) # r1 is an rvalue for 5; r1 <- 5

• (storeWord, r0, r1) # i <- 5

• (addressOf, r2, p) # r2 is an lvalue for p; r2 -> p

• (addressOf, r3, i) # r3 is an lvalue for i; r3 -> i

• # r3 is an rvalue for &i

• (storeWord, r2, r3) # p -> i (or, equivalently, p <- &i)

• (addressOf, r4, j) # r4 is an lvalue for j; r4 -> j

• (addressOf, r5, p) # r5 is an lvalue for p; r5 -> p

• (loadWord, r6, r5) # r6 is an rvalue for p; r6 <- p

• # r6 is an lvalue for *p

• (loadWord, r7, r6) # r7 is an rvalue for *p; r7 <- *p

• (storeWord, r4, r7) # j <- *p

25

IR Code for Addition of an Integer to a Pointer

• For
int i, j, *p;
i = *(p+j);

• IR code /* In my comments, read “->” as points to and read “<-” as gets */
• (addressOf, r0, i) # r0 is an lvalue for i; r0 -> i
• (addressOf, r1, p) # r1 is an lvalue for p; r1 -> p
• (addressOf, r2, j) # r2 is an lvalue for j; r2 -> j
• (loadWord, r3, r1) # r3 is an rvalue for p; r3 <- p
• (loadWord, r4, r2) # r4 is an rvalue for j; r4 <- j
• (constInt, r5, 4) # r5 is an rvalue for 4 (i.e., sizeof(int)); r5 <- 4
• (multSignedWord, r6, r4, r5) # r6 is an rvalue for j*4; r6 <- j*4
• (addSignedWord, r7, r3, r6) # r7 is an rvalue for (p+j); r7 <- (p+j)
• # r7 is an lvalue for *(p+j)
• (loadWord, r8, r7) # r8 is an rvalue for *(p+j); r8 <- *(p+j)
• (storeWord, r0, r8) # i <- *(p+j)

26

IR Code for Subscript Operator with Arrays

• For
int i, j, a[100];

i = a[j];

• The above is syntactic sugar for
i = *(a+j); /* All subscript operators should be translated into * and + in the AST */

• Type checking will convert the above into
i = *((int *)a+j);

• For a cast from an array to a pointer, no code needs to be generated to convert the lvalue operand into an rvalue result

• IR code /* In my comments, read “->” as points to and read “<-” as gets */
• (addressOf, r0, i) # r0 is an lvalue for i; r0 -> i

• (addressOf, r1, a) # r1 is an lvalue for a; r1 -> a[0]

• # r1 is an rvalue for (int *)a; r1 -> a[0]

• (addressOf, r2, j) # r2 is an lvalue for j; r2 -> j

• (loadWord, r3, r2) # r3 is an rvalue for j; r3 <- j

• (constInt, r4, 4) # r4 is an rvalue for 4 (i.e., sizeof(int)); r4 <- 4

• (multSignedWord, r5, r3, r4) # r5 is an rvalue for j*4; r5 <- j*4

• (addSignedWord, r6, r1, r5) # r6 is an rvalue for ((int *)a+j); r6 <- ((int *)a+j)

• # r6 is an lvalue for *((int *)a+j)

• (loadWord, r7, r6) # r7 is an rvalue for *((int *)a+j); r7 <- *((int *)a+j)

• (storeWord, r0, r7) # i <- *((int *)a+j)

27

IR Code for Accessing Multidimensional
Arrays (1 of 5)
• For,

int matrix[5][6]; # matrix is a 5-by-6 array of int

matrix[1][3] = 99;

28

IR Code for Accessing Multidimensional
Arrays (2 of 5)
• In C, remember that a multidimensional array is stored in memory in row-major

order, so the elements of matrix are stored as:
 matrix[0][0]
 matrix[0][1]
 matrix[0][2]
 matrix[0][3]
 matrix[0][4]
 matrix[0][5]
 matrix[1][0]
 matrix[1][1]
 matrix[1][2]
 matrix[1][3]
 matrix[1][4]
 matrix[1][5]
 matrix[2][0]
 ...

29

IR Code for Accessing Multidimensional
Arrays (3 of 5)
• Starting with our example,

int matrix[5][6]; # matrix is a 5-by-6 array of int

matrix[1][3] = 99;

• is syntactic sugar for,

int matrix[5][6]; # matrix is a 5-by-6 array of int

(((matrix+1))+3) = 99;

30

IR Code for Accessing Multidimensional
Arrays (4 of 5)
• Once we apply type checking to,

int matrix[5][6]; # matrix is a 5-by-6 array of int

(((matrix+1))+3) = 99;

• we have,

int matrix[5][6]; # matrix is a 5-by-6 array of int

((int)(*((pointer to array of 6 ints)matrix+1))+3) = 99;

31

IR Code for Accessing Multidimensional
Arrays (5 of 5)
• Generating code for,
int matrix[5][6]; # matrix is a 5-by-6 array of int
((int)(*((pointer to array of 6 ints)matrix+1))+3) = 99;

• the result is,
(addressOf, r0, matrix) # r0 is an lvalue for matrix; r0 -> matrix[0][0]
 # r0 is an rvalue for (pointer to array of 6 ints)matrix; r0 -> matrix[0][0]
(constInt, r1, 1) # r1 is an rvalue for 1; r1 <- 1
(constInt, r2, 24) # r2 is an rvalue for 24 (6*sizeof(int)) (i.e., sizeof(array of 6 int)); r2 <- 24
(multSignedWord, r3, r1, r2) # r3 is an rvalue for 1*24; r3 <- 1*24
(addSignedWord, r4, r0, r3) # r4 is an rvalue for ((pointer to array of 6 ints)matrix+1)
 # r4 is an lvalue for *((pointer to array of 6 ints)matrix+1)
 # r4 is an rvalue for (* int)(*((pointer to array of 6 ints)matrix+1))
(constInt, r5, 3) # r5 is an rvalue for 3; r5 <- 3
(constInt, r6, 4) # r6 is an rvalue for 4 (i.e., sizeof(int)); r6 <- 4
(multSignedWord, r7, r5, r6) # r7 is an rvalue for 3*4; r7 <- 3*4
(addSignedWord, r8, r4, r7) # r8 is an rvalue for ((* int)(*((pointer to array of 6 ints)matrix+1))+3)
 # r8 is an lvalue for *((* int)(*((pointer to array of 6 ints)matrix+1))+3)
(constInt, r9, 99) # r9 is an rvalue for 99; r9 <- 99
(storeWord, r8, r9) # *((* int)(*((pointer to array of 6 ints)matrix+1))+3) <- 99

32

String Constants

• Each string constant is stored in memory with an appended null
character, '\0'
• This can be accomplished in SPIM by using the .asciiz assembler directive

• A string constant consisting of n characters has type array of n+1 char

• §2.7.4: If a string constant appears anywhere except as an argument
to the address operator &, an argument to the sizeof operator, or as
an initializer of a character array, then the usual array conversions
come into play, changing the string from an array of characters to a
pointer to the first character in the string

• Identical string constants are allowed to share the same memory

33

IR Code for String Literal

• For
char *p;
p = "Hello, world";

• After type checking, it becomes
char *p;
p = (char *)"Hello, world";

• At execution time, string literals need to be stored in the .data segment
• So that string literals can be defined in the .data segment and later referred to in the .text segment, each string literal needs to have a compiler-

generated label added as an attribute in the assembly code
• To accomplish these goals, your compiler needs to build a table of string literals with associated compiler-generated labels
• No IR code needs to be generated for the .data segment string declaration, but when assembly code is generated, the string table should be

printed in the assembly language output file. Here is an example of how the string above would be output:
 .data
_StringLabel_1:
 .asciiz "Hello, world"

• IR code for: p = (char *)"Hello, world";
(addressOf, r0, p) # r0 is an lvalue for p; r0 -> p
(addressOf, r1, _StringLabel_1) # r1 is an lvalue for "Hello, world“; r1 -> “Hello, world”
 # r1 is an rvalue for (char *) "Hello, world"
(storeWord, r0, r1) # p -> “Hello, world”

34

IR Code for Casts

• For
int i, j;
i = (int)(char)j;

• IR code
• (addressOf, r0, i) # r0 is an lvalue for i; r0 -> i
• (addressOf, r1, j) # r1 is an lvalue for j; r1 -> j
• (loadWord, r2, r1) # r2 is an rvalue for j; r2 <- j
• (castWordToByte, r3, r2) # r3 is an rvalue for (char)j; r3 <- (char)j
• (castSignedByteToWord, r4, r3) # r4 is an rvalue for (int)(char)j;

 # r4 <- (int)(char)j
• (storeWord, r0, r4) # i <- (int)(char)j

35

Label Definitions

• Each label definition will be a degenerate quadruple (it has just two
fields)

• A definition of a label named “theNewLabel” would be generated as
• (label, theNewLabel)

• However, prefixes need to be added to user declared labels to
guarantee that they are unique in the emitted MIPS assembly
language program
• This will be shown in the following slides

36

IR Code for goto

• For
void f(void) {
 …
 goto errorDetected;
 …
errorDetected:
 …
}

• IR code
• …
• (goto, _UserLabel_f_errorDetected)
• …
• (label, _UserLabel_f_errorDetected)
• …

• The label prefix is formed using the function name because labels are unique per
function

37

IR Code for if

• For
int i;
…code1…
if(i)
 …code2…
…code3…

• IR code
• …code1…
• (addressOf, r0, i)
• (loadWord, r1, r0)
• (gotoIfFalse, r1, _GeneratedLabel_1)
• …code2…
• (label, _GeneratedLabel_1)
• …code3…

38

IR Code for while

• For
int i;
…code1…
while(i)
 …code2…
…code3…

• IR code
• …code1…
• (label, _GeneratedLabel_1)
• (addressOf, r0, i)
• (loadWord, r1, r0)
• (gotoIfFalse, r1, _GeneratedLabel_2)
• …code2…
• (goto, _GeneratedLabel_1)
• (label, _GeneratedLabel_2)
• …code3…

39

IR Code for other C statements

• Use the models above to design IR sequences for the other C statements
• if … else
• do
• for
• break

• Reminder: Binds to the innermost loop – while, do, or for – (or switch)
• Leaves the construct to which it is bound

• continue
• Reminder: Binds to the innermost loop – while, do, or for
• Goes to the next iteration of the construct to which it is bound

• Additional information will be furnished later on how to deal with calling
functions and returning from functions
• return

40

Additional Quadruple Operation Codes

• constInt

• Narrowing casts:
• castWordToHalfWord

• castWordToByte

• castHalfWordToByte

• Widening casts:
• castUnsignedHalfWordToWord

• castSignedHalfWordToWord

• castUnsignedByteToHalfWord

• castSignedByteToHalfWord

• castUnsignedByteToWord

• castSignedByteToWord

• label

• goto

• gotoIfFalse

• gotoIfTrue

41

Compiler Generated Labels

• Entry point
• main
• Your compiler needs to check that a function with the name “main” has been defined

• String literals
• _StringLabel_integer

• Label declared by the user
• _UserLabel_functionName_userLabel

• Label for if, while, etc.
• _GeneratedLabel_integer

• User declared file scope identifiers (global variables & functions)
• SPIM does not allow labels to be the same as opcodes
• Therefore, all global identifiers (except for “main,” which needs to be unaltered) should have

a prefix of _Global_

42

Short-Circuit Operators

• The &&, ||, and ? : operators are more complicated than the other
operators
• They have so-called short-circuit behavior in which some operands are

evaluated and others are not necessarily evaluated

• The generated IR needs to use conditional goto’s to produce the
correct behavior

• Keep in mind that the operands of && and || that are evaluated and
the first operand of ? : need to be checked to see if they are true or
false as specified by the C Programming Language

43

Static Single Assignment Form and Additional
Complexity in Dealing with Short-Circuit Operators

• It may be apparent to the diligent student that the technique that we
are using to generate code will assign to each temporary only once

• This is called Static Single Assignment Form or SSA

• SSA enhances the compiler’s ability to perform optimizations
• Less analysis needs to be performed to determine whether an optimization is

allowed

• Unfortunately, the &&, ||, and ? : operators violate the SSA principle
• Either the true or false expression result of these operators needs to be

assigned to the resultant temporary

44

How to Generate Code for the Short-Circuit
Operators
• There are usually two approaches taken to generate code for the

short-circuit operators
• Assign to the temporary that holds the result of the operator more than once

• Use a new IR instruction called phi (pronounced like “fee”), or ɸ, to select one
of the two results, as appropriate

• Keep in mind that only one of the two operand values will actually be
utilized as the result of the short-circuit operator

45

The phi, or ɸ, IR instruction

• (phi, r2, r0, r1) # either r0 or r1 is assigned to r2

• The phi IR instruction is quite clever
• It “knows” whether the first or the second operand is the one that needs to

be assigned to its result based on the flow of code preceding the phi IR

• Using the phi IR instruction maintains SSA in the IR

• Of course, when it comes to generating real assembly/machine code,
a register will be assigned to more than once

46

Should I Use the phi IR Instruction?

• It is slightly more work to use the phi IR instruction
• This is because when assembly code is generated in PS6, renaming of

temporaries is required, as follows:

• The operands to the phi IR where they are used as results of other IRs are
both renamed to be the name of the result of the phi IR

• The phi IR has no code generated for it

• Feel free to use either approach

47

References to Identifiers in IR

• All references to identifiers in IR should be represented by pointers to
the identifier in the appropriate symbol table

• Even though we have written identifiers in IR nodes as strings, this
does not furnish sufficient information to resolve the name to the
correct identifier in the input program

• This procedure should be followed for both file scope (global)
variables and for function and block scope (local) automatic variables

• References to identifiers should appear only in addressOf IR nodes

48

Automatic Variables

• Automatic (function & block scope) variables will be stored on the
stack using a stack frame

• Information about calling conventions follows
• IR for calling functions and returning from functions

• IR for passing parameters and returning a result

• Allocation of storage for automatic variables on the stack

• Accessing local variables

49

Calling Functions with No Parameters and No
Return Value
• For

 void functionName(void);
 …
 functionName();
 …

• IR code

 (call, _Global_functionName)

50

Calling Functions with Parameters, but with
No Return Value
• For

 void functionName(int a, int b);
 …
 int i, j;
 functionName(i, j);
 …

• IR code
 …
 (addressOf, r0, i)
 (loadWord, r1, r0)
 (parameter, 0, r1)
 (addressOf, r2, j)
 (loadWord, r3, r2)
 (parameter, 1, r3)
 (call, _Global_functionName)
 …

51

Accessing a Called Function’s Return Value

• For

 int functionName(void);
 …
 int i;
 i = functionName();
 …

• IR code

 (addressOf, r0, i)
 (call, _Global_functionName)
 (resultWord, r1)
 (storeWord, r0, r1)

52

Definition of a Function

• For

 void functionName(void) {
 …
 }

• IR code

 (procBegin, _Global_functionName)
 …
 (procEnd, _Global_functionName)

• Executing the procEnd IR operation is the only way to return to the caller

53

Returning a Value From a Function

• For

 int functionName(void) {
 int i;
 …
 return i;
 …
 }

• IR code

 (procBegin, _Global_functionName)
 …
 (addressOf, r0, i)
 (loadWord, r1, r0)
 (returnWord, r1)
 (goto, _GeneratedLabel_1)
 …
 (label, _GeneratedLabel_1)
 (procEnd, _Global_functionName)

54

Summary of IR Operation Codes for
Procedures/Functions
• Opcodes used in procedure/function definitions

• procBegin
• procEnd
• returnWord
• returnHalfWord
• returnByte

• Opcodes used in procedure/function references
• call
• parameter
• resultWord
• resultHalfWord
• resultByte

55

Summary of IR Operation Codes for Memory
Access Operations
Memory Address Opcode:

• addressOf

Memory Access Opcodes:

• loadWord

• loadHalfWord

• loadSignedHalfWord

• loadByte

• loadSignedByte

• storeWord

• storeHalfWord

• storeByte

56

Summary of IR Operation Codes for Multiplicative,
Additive, and Shifting Operations
Multiplicative Opcodes:

• multSignedWord

• multUnsignedWord

• divSignedWord

• divUnsignedWord

• remSignedWord

• remUnsignedWord

Additive Opcodes:

• addSignedWord

• addUnsignedWord

• subSignedWord

• subUnsignedWord

Shifting Opcodes:

• leftShiftWord

• rightShiftSignedWord

• rightShiftUnsignedWord

57

Summary of IR Operation Codes for
Comparison Operations
Inequality Comparsion Opcodes:

• ltSignedWord

• ltUnsignedWord

• leSignedWord

• leUnsignedWord

• geSignedWord

• geUnsignedWord

• gtSignedWord

• gtUnsignedWord

Equality Comparison Opcodes:

• eqWord

• neWord

58

Summary of IR Operation Codes for Bitwise
Operations
Bitwise Opcodes:

• bitwiseAndWord

• bitwiseXorWord

• bitwiseOrWord

59

Summary of IR Operation Codes for Unary
Operations
Unary Opcodes:

• unaryMinus

• unaryLogicalNegation

• unaryBitwiseNegation

60

Summary of IR Operation Codes for Integral
Literal and Type Casting Operations
Integral Literal Opcode:

• constInt

Narrowing Cast Opcodes:

• castWordToHalfWord

• castWordToByte

• castHalfWordToByte

Widening Cast Opcodes:

• castUnsignedHalfWordToWord

• castSignedHalfWordToWord

• castUnsignedByteToHalfWord

• castSignedByteToHalfWord

• castUnsignedByteToWord

• castSignedByteToWord

61

Summary of IR Operation Codes for Labels,
Branching, and Temporary Remapping
Label Definition Opcode:
• label

Branching Opcodes:
• goto
• gotoIfFalse
• gotoIfTrue

Temporary Remapping Opcode:
• phi

62

IR for Invoking System Calls (to be described
later in the MIPS Assembly Language slides)
• Opcode used to invoke a system call

• syscall

63

	Slide 1: Intermediate Representation
	Slide 2: Benefits
	Slide 3: Three Address Code
	Slide 4: Quadruples Representation
	Slide 5: Triples Representation
	Slide 6: Our Implementation
	Slide 7: Generating Code for Subtrees
	Slide 8: Deriving an rvalue from an lvalue (1 of 3)
	Slide 9: Deriving an rvalue from an lvalue (2 of 3)
	Slide 10: Deriving an rvalue from an lvalue (3 of 3)
	Slide 11: References to Identifiers in IR Code
	Slide 12: Details of addressOf IR
	Slide 13: Details of loadWord and storeWord IRs
	Slide 14: Operator results: lvalue or rvalue
	Slide 15: Operator operands: lvalue or rvalue
	Slide 16: Evaluation Example
	Slide 17: Quadruple Operation Codes (1 of 5)
	Slide 18: Quadruple Operation Codes (2 of 5)
	Slide 19: Quadruple Operation Codes (3 of 5)
	Slide 20: Quadruple Operation Codes (4 of 5)
	Slide 21: Quadruple Operation Codes (5 of 5)
	Slide 22: Numbering Temporaries/Registers
	Slide 23: IR Code for Integral Literal
	Slide 24: IR Code for Address (unary prefix &) Operator
	Slide 25: IR Code for Indirection/Dereference (unary prefix *) Operator
	Slide 26: IR Code for Addition of an Integer to a Pointer
	Slide 27: IR Code for Subscript Operator with Arrays
	Slide 28: IR Code for Accessing Multidimensional Arrays (1 of 5)
	Slide 29: IR Code for Accessing Multidimensional Arrays (2 of 5)
	Slide 30: IR Code for Accessing Multidimensional Arrays (3 of 5)
	Slide 31: IR Code for Accessing Multidimensional Arrays (4 of 5)
	Slide 32: IR Code for Accessing Multidimensional Arrays (5 of 5)
	Slide 33: String Constants
	Slide 34: IR Code for String Literal
	Slide 35: IR Code for Casts
	Slide 36: Label Definitions
	Slide 37: IR Code for goto
	Slide 38: IR Code for if
	Slide 39: IR Code for while
	Slide 40: IR Code for other C statements
	Slide 41: Additional Quadruple Operation Codes
	Slide 42: Compiler Generated Labels
	Slide 43: Short-Circuit Operators
	Slide 44: Static Single Assignment Form and Additional Complexity in Dealing with Short-Circuit Operators
	Slide 45: How to Generate Code for the Short-Circuit Operators
	Slide 46: The phi, or ɸ, IR instruction
	Slide 47: Should I Use the phi IR Instruction?
	Slide 48: References to Identifiers in IR
	Slide 49: Automatic Variables
	Slide 50: Calling Functions with No Parameters and No Return Value
	Slide 51: Calling Functions with Parameters, but with No Return Value
	Slide 52: Accessing a Called Function’s Return Value
	Slide 53: Definition of a Function
	Slide 54: Returning a Value From a Function
	Slide 55: Summary of IR Operation Codes for Procedures/Functions
	Slide 56: Summary of IR Operation Codes for Memory Access Operations
	Slide 57: Summary of IR Operation Codes for Multiplicative, Additive, and Shifting Operations
	Slide 58: Summary of IR Operation Codes for Comparison Operations
	Slide 59: Summary of IR Operation Codes for Bitwise Operations
	Slide 60: Summary of IR Operation Codes for Unary Operations
	Slide 61: Summary of IR Operation Codes for Integral Literal and Type Casting Operations
	Slide 62: Summary of IR Operation Codes for Labels, Branching, and Temporary Remapping
	Slide 63: IR for Invoking System Calls (to be described later in the MIPS Assembly Language slides)

